Problem 1 (Inclusion)
Give formal proofs of the following claims:

Claim 1. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Claim 2. $(A - B) \cap (A \cap B) = \emptyset$.
Problem 2 (Partitions and Pivots, Revisited)

In class we introduced the notion of \textit{partition}:

\textbf{Definition 1 (Partition).} A partition of a set S is a pair of sets $T_1, T_2 \subseteq S$ such that:

\begin{enumerate}
 \item $T_1 \cap T_2 = \emptyset$.
 \item $T_1 \cup T_2 = S$.
\end{enumerate}

as well as a \textit{pivot}:

\textbf{Claim 3 (Pivots Determine Partitions).} Let S be a set and $a \in S$. Then the sets:

\begin{align*}
T_1 &= \mathcal{P}(S - \{a\}) \\
T_2 &= \{B \cup \{a\} \mid B \in \mathcal{P}(S - \{a\})\}
\end{align*}

form a partition of $\mathcal{P}(S)$ where a is its pivot.

(a) First, formally prove the following useful fact about set inclusion and difference:

\textbf{Claim 4 (Preservation of Inclusion and Difference).} For any values x and a, if $x \in S - \{a\}$ then $x \in S$.

(b) Use this fact to prove the left-to-right direction of the \textbf{Pivots Determine Partitions} claim:

\textbf{Lemma 1 (Pivot-partitions Are Complete (\(\rightarrow\))).} If $T_1, T_2 \subseteq \mathcal{P}(S)$ are sets formed by choosing a pivot element $a \in S$ as described above, then $T_1 \cup T_2 \subseteq \mathcal{P}(S)$.

Problem 3 (The Cyclotron)

A cycle in a relation is a sequence of \(k \) distinct elements \(x_1, \ldots, x_k \) that are related in sequence and the sequence ends with \(x_k \) and \(x_1 \) being related, i.e.,

\[
(x_1, x_2), (x_2, x_3), \ldots, (x_{k-1}, x_k), (x_k, x_1) \in R.
\]

A cycle is considered non-trivial if \(k \geq 2 \).

(a) Give an artificial example equivalence relation and a non-trivial cycle in that equivalence relation.
(b) Give a real-world example of an equivalence relation and an example of a non-trivial cycle.
(c) An anti-symmetric relation is one where no pair of relations are related in both directions. More formally:

Definition 2 (Anti-symmetry). A relation \(R \) is anti-symmetric if:

\[
\forall xy, (x, y) \in R \rightarrow (y, x) \in R \rightarrow x = y.
\]

In other words, if a pair of elements are related in both directions, then they must be equal. A relation that is reflexive, anti-symmetric, and transitive is called a partial order. For example, the \((\leq) \) relation between the integers \((\mathbb{Z}) \) forms a partial ordering.

Prove the following property regarding cycles and partial orderings.

Claim 5 (Cycles and Partial Orders). Let \(R \) be a partial order. Then \(R \) possess no non-trivial cycles.

(Hint: proceed by induction on the length \(n \) of the cycle under consideration. As a base case, consider cycles of length \(n = 2 \), the smallest such non-trivial cycle. And then consider cycles of length \(n > 2 \). What is your induction hypothesis and how can you decompose your inductive case in terms of this hypothesis?)